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ABSTRACT
Our title describes a phenomenon best illustrated by our Theorem 1.
1« Let h(x) be an entire function of exponential type A < 2%, We
show that there is a unique entire function f£(x) of exponential type A

satisfying the functional equation

(1) f(x+1) - £(x) = h(x), with £(0) = 0 .
2. We define a function sn(x) which reduces to a polynomial in [0,1):
2 n
(2) sn(x) =ax + a X teeot a X if 0 <x <1,

and we extend the definition of sn(x) to all real x by asking that it

satisfy
(3) S,(x+1) - Sn(x) = h(x) for all real x.
¢ _ n | Accession For
If we require also that NTIS éﬁAEI
{(v) (v) DTIC TaB
(4) Sn (+0) Sn (=0) for V = 0,1,ees,n=-1 Unannounced
then we have Justificatio~ _ __
MN-‘- —
n-1 By
(5) S (x) e C (R) S
n Distribytio-
T oS PuL
and also Availabilir-- .-,
|Avatl - -
(6) ;ig Sn(x) = £(x) uniformly for all real x .«{Dist Spec” -1
f

.
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Our title stresses the phenomenon that the C""-continuity requirement
(5) implies the approximation property (6).
As a second example we deal with the functional equation

{7 f(x) = xf(x+1), with £(1) = 1

4

satisfied by £(x) = 1/T(x).

AMS (MOS) Subject Classifications: 15A06, 39B20, 41A10
Key Words: Functional equations, Approximations

Work Unit Number 3 - Numerical Analysis and Computer Science




SIGNIFTTANCE AND EXPLANATION

Examples are given of functional equations, like f£(x+1) - f(x) = h(x),
where a solution f(x) is everywhere defined, provided that f(x) is
prescribed in the interval 0 ¢ x < 1. Ve define a function S (x) by
setting Sn(x) = Pn(x) in O ¢ x <1, where Pn(x) is an as yet unknown
polynomial of deqree n, and requiring S (x) to satisfy our functional
equation for all real x. We now impose the

Continuity Requirement. We require the composite function Sn(x) to

have n -~ 1 continuous derivatives at the point x = 0.

It is shown in our examples that the Continuity Requirement has the
following consequences.,

19, Sn(x) has at least n - 2 continuous derivatives for all real x.

2°, A8 n * @ Sn(x) converges to a solution f(x) of our functional
equation.

The fact that the Continuity Requirement implies the approximation

property 2° explains the meaning of our title.

The respongihility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.




HIGH ORDER CONTINUITY IMPLIES GOOD APPROXIMATIONS
TO SOLUTIONS OF CERTAIN FUNCTIONAL EQUATIONS

T. N. T. Goodman, I. J. Schoenberg and A. Sharma

1« Introduction and main results. We describe here an apparently new 1%} :L

3+ -+ 1

principle of generating polynomial approximations in O $x<1 to the
solutions of certain functional equations.
Our mysterious title will become less 3o if we mention first the example

of the exponential Euler spline Sn(x;t) satisfying the functional equation

(1.1) Sp(x+1;t) = tS_(x;t), with S (0;t) =1 .

Here t 1is a constant such that

(1.2) t=|t]e’® -mcacH, tEgO tET .
let

2 n
(1.3) Pn(x) =1 + Cyx + C X +teset C X

be an as yet unspecified polynomial. We define the function Sn(x;t) by
requiring firstly, that

(1.4) Sn(x;t) = Pn(x) if o $x<1

secondly, that Sn(x;t) should satisfy the functional equation (1.1) for all
real x. The result so far is that Sn(x;t) is a piecewise polynomial

function depending on the n parameters Cqreessy

Now comes the essgsential requirement: We ask that

(1.5) s, (x;t) € " H(m) .
This is what turns Sn(x;t) into the exponential Euler spline., In fact it

Cn-1

suffices to require -continuity only near the point x = 0, bhecause

(1.1) will propagate this order of continuity to all other integer points.

Sponsored by the United States Army undec Contract No, DAAG29-80-C-0041.
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Concerning the continnity at x = 0: By (1.4) and (1.1) we see that in

o} < x < 1 we have Sn(x;t) = Sn(x) = Pn(x), while in -1 < x < 0 we have
Sn(x) = Sn(x+1)/t = Pn(x+1)/t. These two functions Pn(x) and Pn(x+1)/t

will join at x = 0 with n - ' continuous derivatives iff

0y = P:v)(I)/t or ‘
(106) Pr(‘v)(1) = tPr(‘\’)(O), (\) = 0,...,n—1) ®

These are precisely the equations that define the polynomial
(1.7) P (x) = A (x;t)/A (0;t) ,
where An(x;t) is defined by Euler's generating function

4
t-1 Xz An(x’t)
R T
t-e 0

(1.8)

For details see [9], where the exponential Euler splines were first

introduced. It was also shown there that
(1.9) lim sn(x;t) = t¥ = It:lxej'ux for all real x .
n*® .

To summarize: We assume (1.1) and (1.4); now the continuity condition

(1.5) implies the approximation property expressed by the limit relation

(1.9).
That continuity under similar circumstances implies approximation is not

an isolated phenomenon. Our second example is the functional equation

(1.10) f(x+1) - f(x) = h(x), with f£(0) =0 ,
satisfied by the "sum” f(x) of a prescribed function h(x). We assume
h(x) to he entire of exponential type.

Our main result concernina (1.10) is

Theorem 1. 1. We assume that

(v)

(1.11)]n

(O)I < C°Av, (Vv =0,1,0ee ), where C and A are constants
such that

(1.12) Ac¢2n ,




The equation (1.10) has a unique entire solution f£(x) such that

lf(V)

v
(1.13) (0)] < KeA", (V =0,1,.0. ), with K constant .

2. We define Sn(x) by setting

1 1 1 .
..T.ax+—-ax2+...+—anxn if 0<x < i .

(1.14) Sa¥) =37 a8, 21 22 nt

and extend its definition to all real x so as to satisfy

{(1.15) Sn(x+1) - Sn(x) = h(x) .

If we require that

(1.16) Sn(x) is of class -1 in a neiaghborhood of x =0 ,
then
(1.17) S0 e (m)
Finally
(1.18) 1lim S (x) = f(x) vuniformly on R .,
n
nve

For a proof see §2. Theorem 1 is very close to a result of J. M.
Whittaker [12, Theorem 3 on page 22], Our proof brings out more clearly the
main idea of this paper: That (1.14), (1.15), and (1.17) imply (1.18).

If e.g. h(x) = 2 (satisfying (1.11) with A = log 2 < 2%), then the
unique solution of (1.10) satisfying (1.13) is, of course, f(x) = 2%, The
approximation Sn(x) to 2x, furnished by Theorem 1, is different from the
exponential Fuler spline Sn(x;t), for t = 2,

Our third and last example is perhaps the most interesting one: We

consider the functional equation

(1.19) f(x) = xf(x+1), with f(1) =1 ,

satisfied by the reciprocal T~function

(1020) f(X) -T;:;)— .

Notice that (1.19) implies f'(x) = f(x+1) + xf'(x+1), and setting x = 0 we

obtain that

(1.21) £'(0) = £(1) =1 .




Also (1.19) implies for x = 0 that f(0) = 0. Accordingly, we consider the
polynomial
(1.22) P (x) =x + a2x2 +ooot anx" ' '
and following our general approach we define the function sn(x) by setting
(1.23) Sn(x) = Pn(x) if 0<x<1
and extend its definition so as to satisfy
(1.24) Sn(x) = xSn(x+1), Sn(1) = 1, for all real x .

We pass now to the critical continuity requirements on Sn(x). Obgerve
that by (1.23) and (1.24) we obtain the following:
(1.25) In 0 ¢ x <1 we have Sn(x) = Pn(x) '
{(1.26) in -1 {X <0 we have Sn(x) = xSn(x+1) = xPn(x+1) .
If we want these two functions to join at x = 0 with n - 1 continuous
derivatives, we must ask that
(1.27) P (x) - xP_(x+1) = O(x"), as x +0 .

Our main result is

Theorem 2. For n = 1,2,... there is a unique polynomial

(n) 2 (n)xn

(1.28) Pn(X) =X 4+ a2 X Feeot an

satisfying (1.27) with Pn(1) = 1, Its coefficients are rational numbers.

A proof is given in §3. The first six polynomials of this remarkable
sequence 3’re

P1(x) = Pz(x) = X

P3(x) = X +%x2-%x3

(1.29) P4(x) = X +;x2 -%x3 <0-l7x4 .
Ps(x)-x+;x2—§—;x3+;—5x4+%xs .
Pﬁ(x)-x+%x2-;—7x3-%x4+ﬁxs--}gx6 .




The question as to how the C""-continuity of S (x) at x =10 is
transmitted by (1.24) to the other integers is easily answered as follows.
(1.30) In ([=-2,-1) Sn(x) = xSn(x+1) = x(x+1)sn(x+2) = x(x+1)Pn(x+2) .
From (1.27) we find that P (x+1) - (x+1)P (x+2) = O(x+1)" as x * -1,
whence

XP_(x+1) = x(x+1)P_(x+2) = Ox(x+1)" = O(x+1)" as x » -1 .

But then (1.26) and (1.30) show that

g
n

S;v)(-1+0) = (-1’0)1 (v = 0,..0,“’1) ’

and we readily find similarly that

v
(1.31)S;v)(k+0) = S; )(k-O), (V=0,¢00,n=-1) for all integers k < 0 .

Matters are sliqghtly different if we pass to positive k.

Sn(x-1) Pn(x—1)

(1.32) In 11,2) : S (x) = 0o = e,

Now (1.27) shows that Pn(x-1) - (x-1)Pn(x) = 0(x-1)" and so

Pn(x-1) n-1
(1.33) - P (x) = O(x-1) as x * 1 .
x-1 n
But then (1.23) and (1.32) show that
v
S( )(1+0) = S;v)(1-0) Only for vV = 0,0..,“‘2 I3

n

so that we have lost at x = 1 one order of continuity.

From here on there is no further loss of continuity:

1 S(x-2) - 1 P(x-2)
x-1 x-2 x-1 x-2

(1.34) In (2,3) : Sn(x) =

P (x-2)

- P (x=1) = otx-z)“" as x * 2, whence
x=-2 n

However, (1.33) qgives

P (x~-2) P (x-1) n-1
1 - -
n n = C(x 2) = O(x-2)n ! as x *+ 2 ,

x=1 x-2 x-1 x-1
and (1.32), (1.34) show that
v v
Si )(2+0) = S: )(2-0)' (v = 0,....“—2) .

This continues for all positive k and we obtain




Corollary 1. The approximation Sn(x) defined hy (1.23), (1.24) and

(1.27) has the following continuity properties:

(1.35) S, (x) ¢ c"™' at the points x = 0,-1,~2,... ,

(1.36) Sn(x) € Cn-z at the mints X = 1,2,3,..- .

The only exception is S1(x) which is continuous on all of R.

The exceptional case of S,(x) is due to P1(x) = x and the identity

X - x(x+1) = x2 = Ox2 as x * 0.

A further immediate consequence of (1.24) is

Corollary 2. The approximation Sn(x) interpolates 1/T'(x) at all

integers, hence

(1.37) sn(v) = for ve Z .

'
T(v)

We have referred above to S (x) as an approximation of 1/l(x). 1Is it?

This essential point we can not settle and wish to state it as

Conjecture 1. The sequence of polynomials Pn(x) of Theorem 2 satisfy

1 . .
(1.38) ii: Pn(x) =T uniformly in every circle of T« .

As an extremely weak substitute we establish

Theorem 3. For n = 1,2,... we have

(1.39) Ph(x) >0 if O0< x < 1,
(1.40) P;(x) >0 if O $x < 1 .

Proof of (1.39): We apply the Budan-Fourier theorem in its classical

formulation; see e.q. [8) where it is derived from the Descartes-Jacobi
theorem by means of a special totally positive matrix; see also [5, 316-318].
Writing Pn(x) = P(x) we use the notation

(1.41) Vix) = v(P(x),P'(x),e0s,PM)(x))

for the nuv Yer of ~-" inges of sign in the sequence as indicated. If 2(0,1) =
number of zerus of Pix) in (0,1), then the theorem states that

-Q=




However, the relation (1.27) will provide much information concerning V(0)
and V(1): Writing F(x) = P(x) - xP(x+1) we find by Leibnitz's formula that

2 (V) ™)y ™

x) = V) (x) wp(v-1)

(x+1) - {x+1). Setting x =0, (1.27) shows

that

(1.43) M0 = v, = 1,2,000m-

and . the riqht side of (1.42) promises to vanish. In fact from P(x) =
x + a2x2 teoot anxn and (1.43) we find that

(1.44) V(0) = v(0,1,a ,00cray _os @y _qr a,)

(1.45) V(1) = v(1,ag,a5,e000a 4, P11, )

We distinquish two cases.

1e a < 0. In this case we see from (1.45) that V(1) = V(0),

n-12n
whatever the siqgn of P(“'1)(1) might be.

2. > O In this case

3n-12n
PPy = a,_(n=1)1 + a nix
shows that P("-1)(1) has the common sign of a,_, and a,, so that again
v(1) = v(0) .
Ahove we have assumed that a _,a # 0, but the last result is seen to
hold in any case, whether one or both a4 and a, should vanish.
We postpone a proof of (1.40) to §4 because it used results from § 3.

Using (1.24) as in our proof of Cornllary 1 we obtain

Corollary 3, We have

sE==mssmam

{1.46) Sn(x) >0 _lg x>0 ,
and
(1.47) Sn(x) <0 i_n (-1,0), Sn(x) >0 y_1_

(=2,-1), Sn(x) <0 in (-3,-2) a.s.f.

with alternating signs.

A curious negative consequence is

-7




Corollary 4. The function G(x) = log Sn(x) is not a concave function

=E=E=mmsS==S

for x > O.
This follows from a theorem of Bohr, Mollerup and Artin (2, Theorem 2.1

on page 14] that F(x) = log F'(x) is the only convex solution of the

functional equation

F(x+1) - F(x) = loax for x >0, with F(1) =0 .
It suffices to observe that, by (1.24) and (1.46), the function G(x) =
log Sn(x) satisfies

G(x+1) - G(x) = ~log x for x > 0, with G(1) =0 ,
while the identity G(x) = -F(x) is evidently impossible.

Everybody believes the FEuler constant

l—‘ loq n) = 057721 56649 X

n
Y = lim(}

1

to be irrational, but as far as we know nobody has proved this. We also

helieve it, and will here assume that

(1.48) Y is an irrational number .

By (1.37) we know that Sn(x) interpolates P-1(x) at all integers.
However, much more is true as stated in

Corollary 5. We assume (1.48) to hold, and let n 2 3. For each k € Z

the two open arcs

(1.49) y = Sn(x) (k < x < k+1) and y = P-1(x) (k ¢ x ¢ k+1)

cross each other.

Proof. lLet k = 0. Assuming that the arcs (1.49) do not cross and let
us qget a contradiction. More precisely let us assume that
(1.50) S (x) =P (x) ¢ Il x) if 0¢x <1 .

From (1.32) we have

S (x-1) -1
n -1 ' (x=1)
Sn(x) =—x_1 , T " (x) =——;‘-::‘-—-— if Tt ¢x<¢c2 ,

-8-




and therefore
Sn(x) Sn(x-1)
o = — < 1 hy (1.50) .
I "(x) T (x=1)

Hence

(1.51) s _(x) ¢ rlx) if 1<¢x<2 .

However, (1.50) and (1.51) show that Sn(x) < P"(x) throuqghout the interval
0 ¢<x < 2. Since Sn(1) = P-1(1), while Sn € C1(R), we conclude that their

slopes at x = 1 must be equal. This is impossible by (1.48) hecause

(d/dx)r'1(1) -r-(1)/r(1)2 = =[''(1) =Yy, while g'(1) is evidently a
rational number.

We illustrate numerically our conjecture (1.38) as well as Corollary 5
for the case when n = 6. With Ps(x) as given in (1.29) and the table of
I'tx) [1, Table 6.1 on page 267] we find that the functions Ps(x) and
I"'(x) cross at a point £ = .1182,.., and that we have

0<TIx) - P.(x) < .000 001 if O <x <& ,
0 < P(x) - r"'(x) < .000 15 if £ <x <1 .
From the evident proportion

Sn(x) Sn(x+k)

- = Y y (X ¢ Z K e Z) ’
r (x) T (x+k)

it is clear, that for n = 6, the two arcs (1.49) cross at the point
x=£'0k.
Concluding we wish to point out that the two papers {[4] and [11]) deal

with subjects related to the topic of the present note.




2. The equggggg f(x+1) - £(x) = h(x): A proof of Theorem 1. We apply

IzI==== =R sczass=TESIT TSR

our previous method: TJet us construct a compositie function Sn(x) having
the two properties:

1 1 2 1 n .
(2.1) Sn(x) = Pn(x) =97 4% +-5T ax +...+-;T-anx if 0¢x<1 ,

(2. 2) Sn(x) satisfies Sn(x+1) - Sn(x) = h(x) for all real x .

On this function we now impose the continuity condition:

(2.3) s_(x) € 'y .

We claim: If Sn(x) is of class C""1 in a neighborhood of x = 0

then (2.3) holds.

Proof. We write Sn(x) = S(x). Differentiation of {2.2) shows that

sV stV V)

(k+1+0) - (k+0) = (k+0),

s™) (v) (v)

(k+1-0) - S (k-0) = h (k-0)

and by subtraction

(V) (v)

(k+140) - sV (x+1-0) = sV v

(2.4) (x+0) - S (k-0) .

This implies that if the right side of (2.4) vanishes for k = 0, it must
vanish for all k and (2,3) is established.

To inforce Cn-1-continuitv of S, at x =10 we observe the following:
By (2.1) and (2.2) we have:

In [0,1) : S(x) = P_(x), while in [-1,0) : S(x) = S(x+1) - h(x) = P (x+1) -

s stV

h(x). Therefore the equations (+0) = (-0), (V=0,ee0,n=1)

are equivalent to Piv)(O) = P;v)(1) - h(v)(O), and hence to

(v)

(v)
(2.5) Pn (1) =

ptV)

n (0) + h

(o)' (\, = O,...,n—1) .
The remainder of the proof is Aivided into several parts.

a) Construction of the Pn(x). In terms of our explicit expresssion

(2.1) of Pn(x), the system (2.5) is seen to bhe

-10=-




1 1 1
T2y * 3T 2y teeet gy a, = h(O)
1
(206) Waz +oo.+ (n11)! an h'(o)
‘. 1 (n-1)
T =h 0

and let us solve it for the a,.
The matrix of (2.6) is seen to he upper~-trianqular and also "striped"®,
and the inversiocn of such a matrix is equivalent to the expansion of the

reciprocal of a polynomial, as seen from the equivalence of the two relations

C, C,ceccC. -1 D, D, *e* D
(2.7) 0 C1."° -1 = |° D1"'° Ph-1 ’
0 ..' c, 0 ..' D,
(2.8) ! T =D, + D,t +eeet Dnt:"'1 +0(t"), (as t +0) .

n-
cC.+C +ees+ C
1 2t nt

For the matrix of (2.6) we £find that

. t
1 1 1 n-1 e -1 n
W + 2! t +o oot nl t = + O(t )
and therefore
n-1 B
1 1 1 n-1 t n v n
1/(W+7t+...+;|_t ) Set-1 + 0(t) = (X) W-O-O(t )

where Bv are the BRernoulli numbers. It follows that the solution of (2.6)

is given by the matrix equation




B B
! 1 0..—_'.‘:—1——
a4 !' kD (n=1)1 h(0)
o0 n-z [ ]
az = 0 1 h-2)1 h*(0)
a, 0 1 h(n=1 o)
or
n-k B
a = z v! (k+v 1)(0)
v=0
and so
n n n-k
v (k-1+v)
P (x) = )::— 2%—2-\;- (0) .
k=1 k=1 =0
Replacing k by k + 1 we find that
n-1 xk+1
(2:9) Pa0) = LT An
where
n-k-1 B n-1 B
(v+k) v-k (v)
(2.9') A .= ) (0) = § =—=—nh"(0) .
n,k v=0 i vk (V=k)!

8) Construction of the solution f(x). Let m show that the

polynomials (2.9) converge if O $x < 1 and determine their limit. From
lim sup le/V!IVv = 1/2% we conclude that for a small § > 0 we have
IB\’/\HI‘/\’ < 1/(2%=8) for sufficiently large V, and so

By

vy

1 \Y
< C.l(——”'_ ) for all v .,
But then our assumption (1.11) shows that

B
vr

(v+k)

k, A v
< C2A (-27:8') for all v, with C2 constant .

In view of (1.12) we may assume 8 to be so chosen that A ¢ 2¥ - §. Then

(2.10) (0)

(2.10) shows that Sk is well defined by.

T B (v+k)
(2.11) S = ] — (0)
k v=0 \"




and that
(2.12) ISkI < C3Ak for all k, C; constant,
But then
E xk+1
(2.13) f(x) = — G
k=0 (k+1)! "k
is an entire function satisfying (1.13).
Y) Let us show that
(2.14) lim P (x) = £(x), wuniformly in 0 < x < 1 .
n” n = =
By (2.9) and (2.13)
ni1 xk+1 E xk+1
f(x) - P (x) = — (S, - A ) + —_—
n k=0 (k+1)1! k n,k Ken (k+1)! "k
and that it suffices to assume O < x < 1, and to show that
n-1 xk+1
= T ———— - L 4 >
Rn(x) kzo k¥ 1)1 (Sk ,k) 0 as n L

uniformly in [0,1].

In (0,1] we have from (2.10) that

nc1 vV . (vik)

Ir_tx)| ¢ E (k+1)! v=5-k I57 b 0|
n=1 ® v+k

ce, T 7 A

2 =0 (k+1)) van-k (2%-8)"

and replacing the index VvV by vén=k

' ' niﬂ 1 ‘E A\H»n
R (x)] < C e
n = 2 k=0 (k+1)! ve0 (2"-6)n~k+v

n=-1 o
nyoy (2ﬂ-5) (

)
k=0 U0 {k+1)1 2w I

A
C2(2n-3’

(21!)k A

’

A n P V) A n
$Colypp” 1 1 a1 38 G * o

v=0 k=0




which establishes (2.14).

§) pProof that

(2.15) f{x+1) - f(x) = hi(x) .
Let
(2.16) Qh(x) = Pn(x+1) - Pn(x) .
By (2.5) we have Q:V)(O) = P:v)(1) - P;v)(O) = h‘V)(O), which shows that

v
0 (x) = § ’\‘,—!h‘ Yoy .
0
But then (2.16) becomes
nt xv (v)
P (x+1) - P (x) = ) Srh (o

0
and now (2.14) implies (2.15).

Remarks. 1. Is f(x) the unique solution of (1.10) satisfying
(1.13)? That it is we see as follows: The dAifference of two solutions of
(1.10) is also entire of exponential type < 27 and is also periodic of
period 1. By a general theorem (see [3, Theorem 6.10.1 on page 109}]) this
difference must reduce to a constant.

2. Since Sn(x) and f(x) satisfy (1.15) and (1.10) we have

S,(x+1) - S (x) - (f(x+1) - £(x)) = h(x) - h(x) =0
and so
Sn(x+1) - f(x+1) = Sn(x) - f(x) for all x .
This shows that the uniform convergence in (2.14) implies that

(2.17) lim Sn(x) = f(x) uniformly for all real x .
nee

-14-




3. The eguatlon f(x) = xf(x+1): A proof of Theorem 2. The matter

A== SEESESEoSRETERREESS=S=E=E

seems quite simple if we use the proper tools. From (1.27) for x = 0 we get

that Pn(O) = 0. For P(x) = x the left side of (1.27) becomes x -~ x(x+1) =

-xz, and this shows that P,(x) = Pz(x) = X

Assuming n ? 2, (1.27) qgives P;(x) - Pn(x+1) - xP;(x+1) = Onxn-1, and

for x = 0 that P;(O) = Pn(1) = 1. For

(3.1) Pn(x) =X + a2x2 +eoot anx"

we write (1.27) explicitly and find

2 3 n
X +aX +a.X +eeet ax
2 3 n

x(x+1)

azx(x2 + 2x+1)

a3x(x3 + 3x2 +3x + 1)

anx(xn + (?)x"" + (“)x“'2 $eeet 1) =Ox" as x+0 .

Collecting terms and writing that the coefficients of x,xz,...,xn'1, vanish,

we get the equations

-a2 - a3 e an_2 - an_1 - an =0
a, -1 -2, -3, ~eem ("ha - "ha - (ha =0
a, -a, - 3a; -eee- (n22)a 5 - (n';)an_1 - (;)an =0
24 T3, Teee” (n32)an-2 - (“;1)3 -1 ( )an =0
a . —a _-(™ha -("ja =0 .
n-1 n-2 n-2""n-1 n-2""n

This is a system of n - 1 equations in Asrecesdn. Rearranqing these

n

equations we may write

PRI




a2 + a3 + a4 $eood an_2 + an_1 + an = 0
(2-1)a_ + 3la + 4a teeet ("2, + (" Ha + ()a = =1
2 3 4 1 "“n-2 1 -1 1
+ (3-1)a_ + 6a Feoot ("-2)a + " Na + Ma = 0
) 23 4 T 2 "%n-2 2 @n-y 2"%n
(3.2)

n-2 n-1 n
a3 + (4-1’34 L YR ( 3 )an-z + ( 3 )an-1 + (3)an 0

¢ n-1 n

a .+ {(n_z) - 1}an_1 + (n_z)an =0 .

Observe the simple structure of the determinant An of this system. For

instance

It is obtained from a solid minor

of the Pascal triangle by subtracting 1 from the elements of the diagonal
just below its main diagonal. A simple induction shows that all these minors

are = 1:




1 1 eee 1
n
2 3 )
(3.3) Dn = 1 3 . = 1 .
1 .
* n
1 eee (n-z)

1 0 0 o

2 1 1 1

Bs = = D4 a.s.f.

1 1 1 1 1
n-2 n-=1 n
2.1 3 (Gt B G ()
1 3"'1 .
(3.4) An = 0 1 o
n-1 n
° ! (h=2)"' (po3)
and wish to prove
Lemma 1. We have
(305) Aﬂ 2 1 for n = 1'2'000 .

Proof. 1°. We use the fact first pointed out in (7] (see also [8)) that
the infinite Pascal trianqgle is totally positive, i.e. all its minors, of all

orders, are ; 0.

‘ e W1 - TR )




2°., We split the first n - 2 columns of (3.4) intn two rolumns, the

second columns containing only vanishing elements, except the sinqgle element =

-1. In this way An as a sum of "2 determinants

(3.6) A =D+ ) Blivigeeenst ) o (1 ¢d) iy <euad i g n=2) o

1
r>1

where D =1, by (3.3), while (11,...,ir) runs through all combination

n

of r among the numbers 1,2,¢..,n-2, (r>t). Thus A(il""'ir) is the

determinant obtained from Dn by replacing its columns i,,iz,...,ir by the

columns

(i, +1) (i_+1)

1 T r
(0,0.0,0' - 1 '] 0,...,0) (A X XN (0,.00,0' - 1

We summarize its structure by

(3.7) A(il""’ir) =

T
’ 0'000’0) ]

Here all elements are the old elements of N, except for those in the r

columns 11'12""'ir‘

3°, We apply Laplace's rule (see (5, page 6]) of expanding the

determinant (3.7) by all its minors of order r, from its r columns

i,,...,ir, multiplied by their algebraic compliments.

evidently to a single term

This expansion reduces




-1 -1 0
(309) A(i1p-¢l'ir) = ... x C ’
0 .
-1
rXxr
where
r r
): (i.+1) + X i,
i=1 1 ')=‘| J
(3.9) C = (-1) xD ,

where D is a minor of D, and therefore D >0 by °.

4°, From (3.8) and (3.9) we find that

r 2Zi.+r
(3.10) Bligseaesi ) = (=1)7(=1) T «D=0D >0 .

Now (3.3), (3.6) and (3.10) show that (3.5) is established.
Remark. Elimination of the unknowns LUYEER YL between (3.1) and the

system (3.2) allows us to write Pn(x) explicitly in terms of a quotient of

two determinants, e.q.

x2 x3 x4 x5 1 1 1 1

1 1 1 1 2-1 3 4 S
Ps(x) =X 4 s ’

1 3-1 6 10 1 3-1 6 10

0 1 4-1 10 o 1 4-1 10

which is easily seen to agree with its expression as given in (1.29). The
above expression of Ps(x) is readily continued for n > 5 by simply adding
obvious last rows and columns to both determinants; the only trouble is that

we obtain Pn(x) =% +a ratio of two determinants of order n - t.




4. A proof of the second part (1.40) of Theorem 3. We know that the

i+ ¢+ + 2+ M-+ P P bbb

coefficients Agreee,a of the polynomial (3.1) are the solutions of the

n

system of equations (3.2). Let us use this fact to show first that

1
(4.1) a2=5 (o) >0 .

By Cramer's rule

(4-2) a2 = An/An '}

where An is given by (3.4), and Kn is obtained from An by omitting its

first column and second row. We know by (3.5) that An 2 1. Let us show that
also

~

(4.3) An 21 .

This is done by applying to the determinant Kn precisely the procedure
previously applied to An to prove (3.5). Here we need the following
stronger form of the total positivity of the matrix of the determinant Dn of
(3.3):

(4.4) A minor of Dn which doe not vanish formally, i.e.

because it has too many Zero elements, is positive.

Denote by Sn the minor of Dn ohtained by omitting its first column
and second row. This minor having an integer value, the property (4.4)
implies that
(4.5) D 21 .
From this point on the proof of (3.5) as given in §3 apnlied without any
essential change to estahlish (4.3). Now (3.5) and (4.2) imply (4.1).

To establish (1.40) we again apply the Budan-Fourier theorem, this time
to P;(x). Let 2' denote the number of zeros of P;(x) in 0 ¢<x ¢ 1.

Writing V'(x) = v(P'(x), p'(x),...,P(n)

{x)) we ohtain by that theorem that
(4.6) Al < V(1) -« v(O) ,

while the equations (1.43) show that




V'(O) = v(1' azponopan-zl an-1' an)

v'(1)

P(n-1)
n

V(32,a3,0-n,a (1)1 an) .

n-1'
Since a, > 0 by (4.1), it follows as in our proof of (1.39), that the riqht

side of (4.6) vanishes, hence Z' = 0. Since PA(O) = 1, we have estahlished

(1.40).

e 1=




5. On_the nature of our Conjecture 1 of (1.38). The coefficients C

of the expansion

(5.1) T'%—)"' ) ckxk, (c, =1

are qiven in 1, page 2561 to 15 decimal places, as originally computed by
H. T. Davis in 1933, with corrections due to H. E. Salzer. If we substitute
the expansion (5.1) of f(x) = 1/I'(x) into the functional equation €(x) =
xf(x+1) we find that the Cr satisfy an infinite system of linear equations
obtained from our system (3.2) by substituting Cx for a, and then letting
n + %,

The problem is to show that the solutions ain) (k = 2,00.,n) of the

partial system (3.2) converge element-wise to the solutions Cx of the

infinite system. More specifically we wish to show that

(n) k
ak x *

P (x) =
n 1 X

k

h s

e~ 8
0
~
o
-

1

uniformly in every circle of (.

In 1913 P. Riesz devoted a book [6) to such problems which he calls
"Problimes des reduites®. His general theory does not apply to our specific
problem. However, further work in Functional Analysis might solve it. This
shows that Fulerian mathematics still presents to contemporary analysts

challenqing prohlems.
University of Dundee
Dundee, Scotland
University of Wisconsin ~ Madison

University of Alberta

Edmonton, Alherta
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